赵全志

发布时间:2023-05-16     浏览次数:12131

  名:赵全志

  性别:

  出生年月:1968.03

  职称:教授

  系别:农学系

  邮箱:qzzhao@gzu.edu.cn

  



一、个人简历

1教育经历

1988.091992.06,河南农业大学农学系农学本科专业,本科学习,获农学学士学位;

1992.091995.06,河南农业大学作物栽培学与耕作学专业,硕士研究生,获农学硕士学位;

1995.091998.06,南京农业大学作物栽培学与耕作学专业,博士研究生,获农学博士学位。

2工作经历

1998.072001.05,河南农业大学农学院,讲师;

2001.062006.03,河南农业大学农学院,副教授,硕士研究生导师;

2006.04—2022.08,河南农业大学农学院,教授,博士研究生导师;

2015.032018.02,河南省特聘教授;

2017.042021.04,河南农业大学杰出人才;

2009.022022.01,河南农业大学农学院副院长。

2013.052021.04,国家2011计划河南粮食作物协同创新中心办公室主任、副主任、常务副主任;

2011.102021.04,农业农村部黄淮海作物生理生态与耕作重点实验室主任;

2012.012021.04,水稻河南省工程实验室主任;

2016.012021.04,河南省水稻生物学重点实验室主任。

2021.09至今,贵州大学水稻产业技术研究院院长;

2022.08至今,贵州大学农学院,教授,博士研究生导师。

3学术兼职

2020.01至今,国务院学位委员会学科评议组成员(作物学);

2018.03至今,农业农村部水稻专家指导组成员;

2018.10至今,教育部高等学校植物生产类专业教学指导委员会农艺类教学指导分委员会委员;

2019.10至今,中国作物学会第十一届理事会理事;

2019.10至今,中国作物学会水稻专业委员会委员;

2023.01至今,贵州大学学科学术带头人;

2023.01至今,贵州省粮油作物分子育种重点实验室主任;

2023.07至今,贵州省高等学校功能农业重点实验室主任。

  

二、教学与课程

(一)本科生课程

作物栽培学(水稻栽培)

(二)硕士研究生课程

       作物高产理论与实践、作物学研究进展

(三)博士研究生课程

       作物科学前沿、作物栽培学与耕作学专题、现代作物生产专题

  

三、研究方向

       稻作学、水稻栽培生理生态、功能农业

  

四、科研项目

1. 贵州水稻产业提升关键技术创新与应用(贵大领军人才合字[2022]04号),贵州大学国家级领军人才科研专项,202207-2027062400万元;

2. 独脚金内脂调节水稻弱势籽粒灌浆充实的生理与分子机制(32272209,国家自然科学基金面上项目,202301-20261256万元;

3. 南方籼稻优质丰产高效模式创新与应用(2022YFD2300705),国家重点研发计划项目子课题,202301-20251289万元;

4. 贵州省粮油作物分子育种重点实验室(黔科合中引地[2023]008),中央引导地方科技发展资金项目,202301-202412250万元;

5. 贵州省高等学校功能农业重点实验室(黔教技[2023]007号),贵州省教育厅2023年新建省高校重点实验室项目,202307-202512100万元。

  

五、代表著作

1. The miR167-OsARF12 module regulates grain filling and grain size downstream of miR159Plant communicationshttps://doi.org/ 10.1016/j.xplc.2023.100604(通讯作者);

2. OsPIN2 is involved in OsSPL14/17-inhibited tiller bud outgrowth in response to phosphate deficiency in riceEnvironmental and experimental botanyhttps://doi.org/10.1016/j.envexpbot.2023.105297(通讯作者);

3. E3 ubiquitin ligase OsPIE3 destabilises the B-lectin receptor-like kinase PID2 to control blast disease resistance in riceNew Phytologist (2023) 237: 1826–1842(通讯作者);

4. Transcriptome and Metabolome Analyses Reveals the Pathway and Metabolites of Grain Quality Under Phytochrome B in Rice (Oryza sativa L.)Rice (2022) 15:52https://doi.org/10.1186/s12284-022- 00600-5(通讯作者);

5. OsHyPRP06/R3L1 regulates root system development and salt tolerance via apoplastic ROS homeostasis in rice (Oryza sativa L.)

Plant Cell and Environment. 2022;45:900–914(通讯作者);

6.SPL14/17 act downstream of strigolactone signalling to modulate rice root elongation in response to nitrate supplyThe Plant Journal (2021) 106, 649–660(通讯作者);

7. Restriction of soil bacteria promoting high yield of super hybrid rice in the Huaihe Valley in central China by conventional ploughing intensitySoil & Tillage Research2142021):105169(通讯作者);

8. A study of leaf-senescence genes in rice based on a combination of genomics, proteomics and bioinformatics,Briefings in Bioinformatics, 22(4), 2021, 1–35(通讯作者);

9. Methane and nitrous oxide emission characteristics of high- yielding rice fieldEnvironmental Science and Pollution Research (2020) 28:15021–15031(通讯作者);

10. Melatonin improves rice salinity stress tolerance by NADPH oxidase-dependent control of the plasma membrane K+ transporters and K+ homeostasisPlant Cell and Environment. 2020432591-2605(通讯作者);

11. Comparative morphological and transcriptomic responses of lowland and upland rice to root-zone hypoxia,Environmental and experimental botany169(2020).103916(通讯作者);

12. The basic helix-loop-helix transcription factor, OsPIL15, regulates grain size via directly targeting a purine permease gene OsPUP7 in ricePlant Biotechnology Journal (2019) 171527–1537(通讯作者);

13. miR1432-OsACOT (Acyl-CoA thioesterase) module determines grain yield via enhancing grain filling rate in ricePlant Biotechnology Journal (2019) 17712–723(通讯作者);

14. A Resource for Inactivation of MicroRNAs Using Short Tandem Target Mimic Technology in Model and Crop Plants,Molecular Plant (2018)11, 1400–1417(通讯作者);

15. Test of Small RNA Sequencing Repeatability in Rice,Rice science,(2017):24 (1) :56-60(通讯作者);

16. Influence of water potential and soil type on conventional japonica super rice yield and soil enzyme activities,Journal of Integrative Agriculture 2017, 16(5): 1044–1052(通讯作者);

17. qRT9, a quantitative trait locus controlling root thickness and root length in upland riceJournal of experimental botany2015,662723-2732(通讯作者);

18. Preparation and characterizations of Pickering emulsions stabilized by hydrophobic starch particlesFood Hydrocolloids2015,45256-263(通讯作者);

19. Differentially expressed microRNA cohorts in seed development may contribute to poor grain filling of inferior spikelets in riceBMC plant biology2014,14196(通讯作者);

20. Rice leaf heterogeneity in chlorophyll fluorescence parameters under short-term osmotic stressBiologia Plantarum2014,59, 187-192(通讯作者);

21. Effects of high night temperature during grain filling on formation of physicochemical properties for japonica riceJournal of Cereal Science2015,66, 74-80(通讯作者);

22. Influence of Sulfur on Transcription of Genes Involved in Arsenic Accumulation in Rice GrainsPlant Molecular Biology Reporter2015,34, 556-565(通讯作者);

23. Exogenous ABA induces drought tolerance in upland rice: the role of chloroplast and ABA biosynthesis-related gene expression on photosystem II during PEG stressActa Physiologiae Plantarum2014.36, 2219-2227(通讯作者);

24. Effect on high night temperature during grain filling on amyloplast development and grain quality in japonica riceCereal Chemistry, 2013, 90(2):114-119(通讯作者);

25. Differential expression of the microRNAs in superior and inferior spikelets in rice (Oryza sativa)Journal of Experimental Botany2011,62(14):4943–4954(通讯作者);

26. Effects of ATP production on silicon uptake by roots of rice seedlingsPlant Biosystems, 2011145:866-872(通讯作者)。


六、奖励荣誉

1. 水稻弱势籽粒灌浆充实机理及调控关键技术创新与应用,河南省科技进步奖一等奖,2020,第一完成人;

2. 优质抗病粳稻新品种选育及配套栽培技术研究与应用,河南省科技进步奖一等奖,2017,第一完成人;

3. 长江中游稻作气候-土壤-作物协同优化体系及应用,教育部科学技术进步奖一等奖,2019,第八完成人;

4. 粳稻品质形成机理与调优技术研究及应用,河南省科技进步奖二等奖,2004,第一完成人。

5. 全国模范教师,人事部、教育部,2007